

CMFFormController:
Everything You Ever Wanted To Know But Were Afraid

to Ask

Geoff Davis
Plone Conference, 2004
geoff@geoffdavis.net

What is CMFFormController?

l NOT a way to autogenerate forms!
– (You’re thinking of Formulator – that’s a different

talk)

What is CMFFormController?

l Framework used throughout Plone
– Glue that binds forms to scripts and vice versa
– Simplifies coding of forms / form handling scripts
– Manages transitions between forms and scripts

What Problems Does It Solve?

l Helps make products customizable in a way that is
less likely to break when you upgrade

l Without FormController
– The script invoked by submitting a form is hardcoded into

the form
– The page displayed after invoking a script is hardcoded into

the script
– If you want to change what happens after a form is

submitted, you have to customize the form / script.
– Customizations can break when you upgrade!

What Problems Does It Solve?

l With FormController
– Things that are likely to change on upgrade

(contents of scripts, forms) are separated
from things that are less likely to change

– The script invoked by submitting a form can be
specified in a .metadata file

– The page displayed after invoking a script can be
specified in a .metadata file

– Metadata can be overridden in the ZMI

What Problems Does it Solve?

l Provides better implementation of the Model / View /
Controller (MVC) paradigm:

– Model = Zope objects
– View = page templates, DTML
– Controller = CMFFormController + python scripts

l FormController separates controller logic from views
l Makes it unnecessary for your DreamWeaver person

to know what scripts a form should call

Conceptualizing

l Old:
– my_form: invoke my_validation_script
– my_validation_script: check some stuff. on success, call my_script
– my_script: do some stuff. show my_page

l New:
– my_form: generic form

l Metadata:
– validate using my_validation_script
– If “success”, call my_script

– my_verification_script: Check some stuff. Return “success”
– my_script: Do some stuff. Return “success”

l Metadata:
– If “success”, show my_page

Conceptualizing

l Atomic units are:
– [form + chain of validation scripts]
– [script]

l Return values of these units are states, not explicit
directives to show a page / call a script

l FormController takes care of the transitions

l FormController implements the Controller/State
design pattern (More buzzwords!)

Why All This Is Useful

l Example #1:
– By default, after you edit a Plone document, you

are shown a view of the document
– Suppose, instead, you want to be taken to /

index_html
– With FormController, you can make the change

by modifying a single item in the ZMI
– If document_edit.py is changed in a Plone

upgrade, the changes won’t break your site

Why All This Is Useful

l Example #2:
– Suppose you want to add a spell checking script

and a correction page before the document_edit
script

– With FormController you can programmatically
insert the new page + script without changing
either document_edit_form or document_edit

– Forms + scripts are now like a linked list – you
can chain new forms and scripts together and
insert and remove things programmatically

Questions?

l Any questions before we start coding an
example?

How It’s Done

l FormController uses specially modified page
templates and python scripts

– Page Templates (.pt files) are replaced by Controller Page
Templates (.cpt files)

– Python Scripts (.py files) are replaced by Controller Python
Scripts (.cpy files) and Validator Python Scripts (.vpy files)

l If you don’t use.cpt / .cpy / .vpy files, everything
works as before. FormController is strictly optional!

My First ControllerPageTemplate

l We’re going to create a web application that
1) Prompts a user for two integers
2) Verifies that the user enters only integers
3) Displays the sum of the entered integers

l Follow along! Grab code snippets from
http://plone.org/Members/geoff/

add_numbers form

l Step 1: Create the form
– In the ZMI, add a new Controller Page Template
– Give it ID “add_numbers” and click Add and Edit

<html>
 <body>
 <form action=“” method=“post”>
 <p>Enter two integers.</p>
 First: <input type=“text” name=“n1” value=“” />

 Second: <input type=“text” name=“n2” value=“” />

 <input type=“submit” name=“submit” value=“Submit” />
 </form>
 </body>
</html>

add_numbers form

Now make changes to the form for CMFFormController:
2) Make the form submit to itself
3) Add the hidden value form.submitted. This is a flag that tells the

form that it needs to process the values in the request.

<form
 tal:attributes=“action python:here.absolute_url()+’/’+template.id”
 method=“post”>
 <input type=“hidden” name=“form.submitted” value=“1” />
 <p>Enter two integers.</p>
 First: <input type=“text” name=“n1” value=“” />

 Second: <input type=“text” name=“n2” value=“” />

 <input type=“submit” name=“submit” value=“Submit” />
</form>

add_numbers_validate

l Step 2: Create a validator for the form
– In the ZMI, add a new Controller Validator
– Give it ID “add_numbers_validate” and click Add

and Edit
– Enter title “Validate add_numbers form”
– Enter parameters “n1, n2”

add_numbers_validate code

Make sure that a value was entered for the first integer:

if not n1:
 state.setError('n1', 'Please enter a value')

state = built-in object that carries the state for the current action
– Holds the status of the validation (e.g., success or failure)
– Holds error messages
– Holds status messages that should be displayed after validation

else:
 try:
 n1 = int(n1)
 except (ValueError, TypeError):
 state.setError('n1', 'Please enter an integer')

state.setError method:
– First parameter = id of variable associated with error
– Second parameter = error message

Repeat tests for n2

add_numbers_validate

Validators return a status value via the state object
l Typical status values are ‘success’ and ‘failure’
l Validators must return the state object
l Default initial status is ‘success’
l Validators can be chained together. Status is passed along the chain

via the state object.

if state.getErrors(): # an error has occurred
 state.setStatus('failure')
 return state.set(portal_status_message=\
 'Please correct the errors shown')

return state # no errors - always return the state

add_numbers_validate

if not n1:
 state.setError('n1', 'Please enter a value')
else:
 try:
 n1 = int(n1)
 except (ValueError, TypeError):
 state.setError('n1', 'Please enter an integer')

if not n2:
 state.setError('n2', 'Please enter a value')
else:
 try:
 n2 = int(n2)
 except (ValueError, TypeError):
 state.setError('n2', 'Please enter an integer')

if state.getErrors(): # an error has occurred
 state.setStatus('failure') # set status to failure
 return state.set(portal_status_message='Please correct the errors shown')

return state # no errors -- always return the state object

Wiring things together

l Now we need to tell FormController that
add_numbers_validate is a validator for the
add_numbers form

l In the ZMI, go to the add_numbers form
l Click the Validators tab
l Add a default validator:

– Context_type: Any
– Button: leave blank
– Validators: add_numbers_validate

What is all this stuff?

l Default Validator vs Validator Override
– Default validators: Validators created by a Product creator /

validators specified in a .metadata file
– Override: place for changes made by a 3rd party product

l Context type: Lets you specify different validators depending
on the context object’s type. Especially useful in Archetypes,
since the same base_edit form is used for editing all context
types.

l Button: Lets you specify different validators depending on the
button pressed.

l Validators: List of scripts used to validate the form. Scripts are
invoked in order.

Testing the Form

l Go to the add_numbers form
l Fill in 2 numbers, submit

– Exception!

l Fill in some non-integers, submit
– We get the form back, but no error messages

l We have a little more work to do

Actions

l Need to tell FormController what to do after
validation

l In the ZMI, go to the add_numbers form
l Click the Actions tab
l Under default action, enter

– Status: success
– Context type: Any
– Button: (leave blank)
– Action type: traverse_to
– Action argument: string:add_numbers_script

What is all this stuff?

l Default Action vs Action Override
– Default actions: Actions created by a Product creator / actions specified in

a .metadata file
– Override: place for changes made by a 3rd party product

l Status code: Lets you specify different actions depending on the
status code returned by a script / form validators

l Context type: Lets you specify different actions depending on the
context object’s type.

l Button: Lets you specify different actions depending on the button
pressed.

l Action type: Should we traverse to the next form/script (and preserve
the contents of the REQUEST) or redirect to it?

l Action argument: A TALES expression that specifies the next thing to
do.

What we have done so far

l We have told FormController:
– when validation succeeds, call

add_numbers_script

l By default, ‘failure’ status results in traversal
to the form submitted.
– Can specify this explicitly if you want
– Can override if you need to (e.g. errors send one

to a special error page)

Showing Error Messages

l Now we need to modify the form so that it displays
any error messages generated by validation

l The state object is passed to the form in options.
Usually the only thing we need from the state object
is the error messages

l Get the messages as a dictionary using the following
TALES expression:

– options/state/getErrors

add_numbers form

<p tal:define=“msg request/portal_status_message|nothing”
 tal:condition=“msg”
 tal:content=“msg” />
<form
 tal:define=“errors options/state/getErrors”
 tal:attributes=“action python:here.absolute_url()+’/’+template.id”
 method=“put”>
 <input type=“hidden” name=“form.submitted” value=“1” />
 <p>Enter two integers.</p>
 <p tal:define=“err errors/n1|nothing” tal:condition=“err”
 tal:content=“err” />
 First: <input type=“text” name=“n1”
 tal:attributes=“value request/n1|nothing” />

 <p tal:define=“err errors/n2|nothing” tal:condition=“err”
 tal:content=“err” />
 Second: <input type=“text” name=“n2” value=“” />

 tal:attributes=“value request/n2|nothing” />

 <input type=“submit” name=“submit” value=“Submit” />
</form>

Testing, testing, 1, 2, 3…

l Now try testing the add_numbers form
– You should see error messages if you enter bad

numbers
– You should get an error if you enter integers (we

haven’t written add_numbers_script yet!)

add_numbers_script

l Step 3: Create a script to process the values
submitted
– In the ZMI, add a new Controller Python Script
– Give it ID “add_numbers_script” and click Add

and Edit
– Enter title “Process add_numbers form”
– Enter parameters “n1, n2”

add_numbers_script

l First convert the form values to integers
n1 = int(n1)
n2 = int(n2)

l Next store the value in the state object
– Keyword arguments set in the state object get passed along,

l in the REQUEST if you do a traversal, or
l in the query string if you do a redirect
state.set(n=n1+n2)

l Specify the next action.
– Action can be specified in the action tab
– state.setNextAction provides a shortcut

state.setNextAction('traverse_to:string:add_numbers_results')

l Return the state (always return the state!)
return state

Showing the Results

l Step 4: Create a page to show the results
– In the ZMI, add a new Page Template
– Give it ID “add_numbers_results” and click Add and Edit

<html>

 <head>

 <title tal:content="template/title">The title</title>

 </head>

 <body>

 <p tal:content="request/n|nothing" />

 </body>

</html>

Testing

l In the ZMI, click on the add_numbers form
l Click the test tab
l Enter some non-integers

– Should get nice error messages

l Enter some integers
– Should get a sum

Adding Complexity

l Task: Add a second button that computes a
difference of two numbers.

l Method:
1) Rename the existing button and add the

second
<input type=“submit” name=“form.button.add”

 value=“Add” />
<input type=“submit” name=“form.button.subtract”

 value=“Subtract” />

2) Specify validators and actions for buttons
“add” and “subtract”

Gotcha

l In IE, you can submit a page with a carriage
return. No button will register as having
been pressed.

l You need to always specify validators / action
for any button. This controls what happens
when a form is submitted with CR.

l FormController will log a warning if you forget
to do this in a .metadata file (Plone 2.0.4
generates lots of these warnings)

Development on the File System

l Don’t develop in the ZMI!
l File system procedure for FormController is

very similar.
l Use .cpt, .vpy, and .cpy files
l Specify actions and validators in a .metadata

file

.metadata

l Special extra sections to your metadata file
 [default]

title=My Title
[validators]
validators=my_validator
[actions]
action.success=string:my_script

l Gotcha: If you create a .metadata file that can’t be
parsed, it can prevent an entire skin from loading.
You will see an empty directory view.

More Details

l Fairly complete documentation in the ZMI
l Go to portal_form_controller, click on the

Documentation tab

